TSTP Solution File: PUZ088^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : PUZ088^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n185.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:28:58 EDT 2014

% Result   : Theorem 0.60s
% Output   : Proof 0.60s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : PUZ088^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n185.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 08:14:51 CDT 2014
% % CPUTime  : 0.60 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1c84638>, <kernel.DependentProduct object at 0x1c84f80>) of role type named cLIKES
% Using role type
% Declaring cLIKES:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1e471b8>, <kernel.Single object at 0x1c849e0>) of role type named cLYLE
% Using role type
% Declaring cLYLE:fofType
% FOF formula (<kernel.Constant object at 0x1c84f80>, <kernel.Single object at 0x1c84908>) of role type named cBRUCE
% Using role type
% Declaring cBRUCE:fofType
% FOF formula (((and (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))->((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))) of role conjecture named cTHM68A
% Conjecture to prove = (((and (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))->((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))):Prop
% We need to prove ['(((and (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))->((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))))']
% Parameter fofType:Type.
% Parameter cLIKES:(fofType->(fofType->Prop)).
% Parameter cLYLE:fofType.
% Parameter cBRUCE:fofType.
% Trying to prove (((and (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))->((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))))
% Found x00:=(x0 V):((cLIKES V) cBRUCE)
% Found (x0 V) as proof of ((cLIKES V) x3)
% Found (x0 V) as proof of ((cLIKES V) x3)
% Found (x0 V) as proof of ((cLIKES V) x3)
% Found (ex_intro010 (x0 V)) as proof of ((ex fofType) (fun (Z:fofType)=> ((cLIKES V) Z)))
% Found ((ex_intro01 cBRUCE) (x0 V)) as proof of ((ex fofType) (fun (Z:fofType)=> ((cLIKES V) Z)))
% Found (((ex_intro0 (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V)) as proof of ((ex fofType) (fun (Z:fofType)=> ((cLIKES V) Z)))
% Found (((ex_intro0 (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V)) as proof of ((ex fofType) (fun (Z:fofType)=> ((cLIKES V) Z)))
% Found (x10 (((ex_intro0 (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))) as proof of ((cLIKES x2) V)
% Found ((x1 V) (((ex_intro0 (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))) as proof of ((cLIKES x2) V)
% Found ((x1 V) (((ex_intro0 (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))) as proof of ((cLIKES x2) V)
% Found (fun (V:fofType)=> ((x1 V) (((ex_intro0 (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V)))) as proof of ((cLIKES x2) V)
% Found (fun (V:fofType)=> ((x1 V) (((ex_intro0 (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V)))) as proof of (forall (V:fofType), ((cLIKES x2) V))
% Found (ex_intro000 (fun (V:fofType)=> ((x1 V) (((ex_intro0 (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))))) as proof of ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))
% Found ((ex_intro00 cLYLE) (fun (V:fofType)=> ((x1 V) (((ex_intro0 (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))))) as proof of ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))
% Found (((ex_intro0 (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) (((ex_intro0 (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))))) as proof of ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))
% Found ((((ex_intro fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) ((((ex_intro fofType) (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))))) as proof of ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))
% Found (fun (x1:(forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))=> ((((ex_intro fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) ((((ex_intro fofType) (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V)))))) as proof of ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))
% Found (fun (x0:(forall (X:fofType), ((cLIKES X) cBRUCE))) (x1:(forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))=> ((((ex_intro fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) ((((ex_intro fofType) (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V)))))) as proof of ((forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))->((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))))
% Found (fun (x0:(forall (X:fofType), ((cLIKES X) cBRUCE))) (x1:(forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))=> ((((ex_intro fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) ((((ex_intro fofType) (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V)))))) as proof of ((forall (X:fofType), ((cLIKES X) cBRUCE))->((forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))->((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))))
% Found (and_rect00 (fun (x0:(forall (X:fofType), ((cLIKES X) cBRUCE))) (x1:(forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))=> ((((ex_intro fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) ((((ex_intro fofType) (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))))))) as proof of ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))
% Found ((and_rect0 ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))) (fun (x0:(forall (X:fofType), ((cLIKES X) cBRUCE))) (x1:(forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))=> ((((ex_intro fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) ((((ex_intro fofType) (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))))))) as proof of ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))
% Found (((fun (P:Type) (x0:((forall (X:fofType), ((cLIKES X) cBRUCE))->((forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))->P)))=> (((((and_rect (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))) P) x0) x)) ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))) (fun (x0:(forall (X:fofType), ((cLIKES X) cBRUCE))) (x1:(forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))=> ((((ex_intro fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) ((((ex_intro fofType) (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))))))) as proof of ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))
% Found (fun (x:((and (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))))=> (((fun (P:Type) (x0:((forall (X:fofType), ((cLIKES X) cBRUCE))->((forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))->P)))=> (((((and_rect (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))) P) x0) x)) ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))) (fun (x0:(forall (X:fofType), ((cLIKES X) cBRUCE))) (x1:(forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))=> ((((ex_intro fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) ((((ex_intro fofType) (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V)))))))) as proof of ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))
% Found (fun (x:((and (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))))=> (((fun (P:Type) (x0:((forall (X:fofType), ((cLIKES X) cBRUCE))->((forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))->P)))=> (((((and_rect (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))) P) x0) x)) ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))) (fun (x0:(forall (X:fofType), ((cLIKES X) cBRUCE))) (x1:(forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))=> ((((ex_intro fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) ((((ex_intro fofType) (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V)))))))) as proof of (((and (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))->((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))))
% Got proof (fun (x:((and (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))))=> (((fun (P:Type) (x0:((forall (X:fofType), ((cLIKES X) cBRUCE))->((forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))->P)))=> (((((and_rect (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))) P) x0) x)) ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))) (fun (x0:(forall (X:fofType), ((cLIKES X) cBRUCE))) (x1:(forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))=> ((((ex_intro fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) ((((ex_intro fofType) (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))))))))
% Time elapsed = 0.288188s
% node=42 cost=1098.000000 depth=23
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:((and (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))))=> (((fun (P:Type) (x0:((forall (X:fofType), ((cLIKES X) cBRUCE))->((forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))->P)))=> (((((and_rect (forall (X:fofType), ((cLIKES X) cBRUCE))) (forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y)))) P) x0) x)) ((ex fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V))))) (fun (x0:(forall (X:fofType), ((cLIKES X) cBRUCE))) (x1:(forall (Y:fofType), (((ex fofType) (fun (Z:fofType)=> ((cLIKES Y) Z)))->((cLIKES cLYLE) Y))))=> ((((ex_intro fofType) (fun (U:fofType)=> (forall (V:fofType), ((cLIKES U) V)))) cLYLE) (fun (V:fofType)=> ((x1 V) ((((ex_intro fofType) (fun (Z:fofType)=> ((cLIKES V) Z))) cBRUCE) (x0 V))))))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------